Pathway 5

Autumn Term

Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12	Week 13	Week 14	Week 15
Number Place value / Rounding		Number Addition / Subtraction		Number Multiplication / Division		Number Fractions (Inc Decimals / Percentages)		Number Place value / Rounding		Number Addition / Subtraction		Number Multiplication / Division		Number Fractions
Measurement Time / money				Geometry Properties of Shape		Statistics Use and Interpret		Measurement Perimeter and Area				$\begin{array}{r} \text { Geol } \\ \text { Propertie } \end{array}$	etry of Shape	Statistics Use and Interpret

Spring Term

Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
Number Place value / Rounding		Number Addition / Subtraction		Number Multiplication / Division		Number Fractions (Inc Decimals / Percentages)		Number Place value / Rounding		Number Addition / Subtraction	
Measurement Using Measures			Geometry Properties of Shape		Statistics Use and Interpret		Measurement Time / money			Geometry Properties of Shape	

Summer Term

Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
Number Multiplication / Division		Number Fractions (Inc Decimals / Percentages)		Number Place value / Rounding		Number Addition / Subtraction		Number Multiplication / Division		Number Fractions (Inc Decimals / Percentages)	
Measurement Perimeter and Area			Geometry Properties of Shape		Statistics Use and Interpret		Measurement Using Measures			Geometry Position and direction	

Pathway 5

Number: Place Value
Read, write, order and compare numbers to at least 1000000 and determine 500?

- Count forwards or backwards in steps of powers of 10 from any given number up to 1000000
Interpret negative numbers in contert, count forwards and backw positive and negative whole numbers through zero
Round any number up to 1000000 to the nearest $10,100,1000,10000$ and Round and
100000
Solve
Solve number problems and practical problems that involve number, place value and rounding e.g. The distance to the bus stop is 1 km to the nearest 100 m ; what is the shortest distance it could be?
Recognise and descrals, and find the terne
fractions and decimes, including those involving complete the sequence: $\longrightarrow 16,8,4, \ldots, 1,0.5$,
- Read Roman numerals to 1000 (M) and recognise years written in Roman numerals. e.g. MCMXIV (1914)

Number: Multiplication and Division
Continue to practise and apply multiplication tables and related division facts, committing them to memory and using them confidently to make large calculations
common fitiples and factors, including finding all factor pairs of a number and Common factors of two numbers
used by decomposing them into their factors eivion where larger numbers are $=23$
Know and use the vocabulary of prime numbers, prime factors and composite
(non-pri) (non-prime) numbers e.g. prime factors of $60=2 \times 2 \times 3 \times 5$. Establish whether a number up to 100 is prime and recall prime numbers up to 19
Multiply and divide numbers up to 4 digits by a one- or two-digit number using a formal written method, incluaing long multipication for two-digit numbers, shor
division and interpret remainders appropriately for the context division and interpret remainders appropriately for the context.
and those involving decimals by 10,100 and 1000 Recognise and use square numbers and cube numbers, and the notation for squared (${ }^{2}$) and cubed (${ }^{3}$)
Solve problems involving addition, subtraction, multiplication and division and a Solve problems involving multiplication and division, including scaling by simpl fractions and problems involving simple rates.eg a toymaker can make 8 toys in 2 hours; how many toys can he make in 5 hours?

Geometry: Position and Direction
Identify, describe and represent the position of a shape following a reflection or translation,
changed.
$\frac{\text { Number: Fractions (including decimals) }}{\text { Know that percentages, decimals }}$
Know that percentages, decimals and fractions are different ways of expressing zero. Compare and order fractions whose denominators are all multiples of the same number

- Identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths and extending to thousandths, making links to decimals and measures. Recognise and use thousandths and relate
them to tenths, hundredths and decimal equivalents e.g. $782 / 1000=7 / 10+$ $8 / 100+2 / 1000$
- Recognise mixed numbers and improper fractions and convert from one form to the other e.g. $52 / 3=17 / 3$ and write mathematical statements >1 as a mixed
Add and subtract fractions with the same denominator and multiples of the Add and subtract fractions with $11 / 10=11 / 10$. Find fractions of numbers and quantities e.g. $7 / 8$ of 240 ml
- Connect multiplication by a fraction to using fractions as operators e.g. $8 / 5$ of 40 $=40 \times 8 / 5$. Multiply proper fractions and mixed numbers by whole numbers, supported by materi
$=615 / 6=83 / 6=81 / 2$
- Mentally add and subtract: tenths e.g. $0.8+0.9-0.2$, one-digit whole numbers and tenths e.g. $7.4-6.6$, complements of 1 e.g. $0.83+0.17=1$. Add and subtract decimals with a different number of decimal places e.g. $98.4-9.7$
- Read, write, order and compare decimal numbers as fractions e.g. $0.8=4 / 5$.
Round decimals with two decimal places to the nearest whole number and to one decimal place numbers with up to three decimal places e.g. put these decimals in order starting from the smallest: $0.471,0.46,0.4,0.465,0.5$
- Recognise the per cent symbol (\%) and understand that per cent relates to "number of parts per hundred", and write percentages as a fraction with
denominator hundred, and as a decimal fraction and recognise that percentages denominaotr hundred, and as
Solve problems and puzzles involving number up to three decimal places, checking the reasonableness of answers and solve problems which require knowing percentage and decimal equivalents of $1 / 2,1 / 4,1 / 5,2 / 5,4 / 5$ and those with a denominator of a multiple of 10 or 25

Number: Addition and Subtraction

- Add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction)
- Add and subtract numbers mentally with increasingly large numbers e.g. 12462
$-2300=10162$
a probleming to check answers to calculations and determine, in the context of Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why e.g. Write a number story for this
number sentence: $3709=4562+234-1087$

Statistics; Use and interpret dat

- Complete, read and interpret information in tables, including timetables. Solve comparison, sum and difference problems using information presented in line graphs
- Connect work on coordinates and scales to their interpretation of time graphs

Measurement

- Measure and calculate the perimeter of composite rectilinear shapes in centimetres and metres
Calculate and compare the area of squares and rectangles including using the area of irregular shapes e.g. investigate possible rectangles with the same
area as a particular square
Estimate volume e.g. using $1 \mathrm{~cm}^{3}$ blocks to build cubes and cuboids and capacity
Estimate volume e.g. using $1 \mathrm{~cm}^{3}$ blocks to build cubes and cuboids and capaciiy e.g. using water

Calculate the area of scale drawings using given measurements. e.g. calculate
the area of a $5 \mathrm{~cm} \times 3 \mathrm{~cm}$ garden on a scale drawing with a scale $1 \mathrm{~cm} \cdot 2 \mathrm{~m}\left(60 \mathrm{~m}^{2}\right.$
Using Measure Convert between different units of measure (e.g. kilometre and metre; centimetre
and metre; centimetre and millimetre; gram and kilogram; litre and milliitre) e.g. and metre; centim
$2.2 \mathrm{~m}=2200 \mathrm{~mm}$
Understand and use equivalences between metric and common imperial units such as inches, pounds and pints e.g. Given that an inch is approximately 2.5 cm such as inches, pounds and pints e.g. Given that and
calculate the metric equivalent of a foot (12 inches)
Money and Time
Use all four operations to solve problems involving measure (e.g. length, mass,
volume, money) using decimal notation including scaling
Solve problems involving converting between units of time e.g. three children
share a trophy for 8 weeks and 4 days; they each have it for the same length of time; how long does each child keep the trophy?

Geometry: Properties of Shape
Identify 3-D shapes, including cubes and other cuboids, from 2-D representation
Draw lines accurately to the near
Know angles are measured in
reflex angles

- Draw given angles, and measure them in degrees (${ }^{\circ}$)

Identify

angles at a point and one whole turn (total 360°) angles at a point on a straight line and $1 / 2$ a turn (total 180°)
other multiples of 90°

- Use angle sum facts and other properties to make deductions about missing

Ungles the properties of rectangles to deduce related facts and find missing length and angles e.g. all angles are right angles, diagonals are congruent (same and angles e.g. all angles are right angles, diagonals are congruent (same
length) and bisect each other (divide into two equal parts), one diagonal separates the rectangle into two congruent triangles..

- Use the term diagonal and make conjectures about the angles formed by diagonals and sides, and other properties of quadrilaterals, e.g. using dynamic geometry ICT tools.
Distinguish between regular and irregular polygons based on reasoning about equal sides and angles e.g. sort triangles and quadrilaterals into regular and
irregular sets, realising that only the equilateral triangles and the squares are regular

